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Abstract
Using a perturbative approach, the effects of the energy gap induced by the Aharonov–Bohm
(AB) flux on the transport properties of defective metallic single-walled carbon nanotubes
(MSWCNTs) are investigated. The electronic waves scattered back and forth by a pair of
impurities give rise to Fabry–Perot oscillations which constitutes a coherent backscattering
interference pattern (CBSIP). It is shown that the CBSIP can be aperiodically modulated by
applying a magnetic field parallel to the nanotube axis. In fact, the AB-flux brings this CBSIP
under control by an additional phase shift. As a consequence, the extrema as well as zeros of
the CBSIP are located at the irrational fractions of the quantity �ρ = �/�0, where � is the
flux piercing the nanotube cross section and �0 = h/e is the magnetic quantum flux. Indeed,
the spacing between two adjacent extrema in the magneto-differential conductance (MDC)
profile is decreased with increasing magnetic field. The faster and higher and slower and shorter
variations are then obtained by metallic zigzag and armchair nanotubes, respectively. Such
results lead to the proposal that defective metallic nanotubes could be used as
magneto-conductance switching devices based on the AB effect.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to their quasi-one-dimensional structure and intriguing
electronic properties, carbon nanotubes have attracted an
increasing amount of attention [1]. Carbon nanotubes are
tubular nano-objects which can be thought of as graphenes
wrapped onto a seamless cylinder. Depending sensitively
on the wrapping vector, a nanotube may be either a one-
dimensional (1D) metal with a finite density of states at
the Fermi energy or a semiconductor with a gap. In
particular, because of the 1D nature of their electronic
conduction bands near the Fermi energy, metallic single-walled
nanotubes constitute a nearly perfect realization of 1D quantum
wires [2–5].

The investigation of quantum transport in carbon nan-
otubes is expected to lead to unprecedented potential applica-
tions for the development of nanoelectronic devices. They can
be applied as conducting quantum wires [5, 6], single-electron
tunneling transistors [7, 8], field-effect transistors [9], and spin-

electronic devices [10]. Theoretical calculations based on the
Landauer–Bütticker formalism [11, 12] predict conductance
quantization for a perfect metallic nanotube for the case of
ideal contacts. The maximum value of the conductance near
the Fermi energy reaches 2G0, where G0 = 2e2/h is the con-
ductance quantum [13]. However, in contrast to a pristine nan-
otube, several theoretical works [14–20] and experimental ev-
idence [21–24] have shown that in the presence of disorders
coming from various sources like chemical impurities, topo-
logical defects [25], and vacancies this quantized conductance
of nanotubes does not follow the aforesaid results. In practise
these imperfections are unavoidable when manipulating nan-
otubes into devices and induce departure from ballistic trans-
port, and yet preserve quantum interference effects which can
be profoundly affected by magnetic fields.

Owing to the decoherence, the quantum corrections to
the classical conductance of a device are usually negligible
in macroscopic systems at the room temperature. In
mesoscopic systems at low temperatures, however, the
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quantum mechanical coherency becomes more important
because the phase coherence length lφ increases with
decreasing temperature. When the coherence length lφ exceeds
the elastic mean free path lm, scattering on different impurities
can interfere. Several QI modifications are: (1) the WL
correction, which originates when pairs of time-reversed
paths in a diffusive sample interfere constructively in the
zero magnetic field. This interference enhances (reduces)
the probability of electronic backscattering, decreasing
(increasing) the conductance of the sample [26]. (2) The
AB and Altshuler–Aronov–Spivak (AAS) oscillations. The
AAS effect is actually the same WL correction embracing a
magnetic field [27–29]. As the magnetic field is increased,
the AB phase eliminates the WL constructive interference,
leading to magneto-conductance. (3) Universal conductance
fluctuations (UCF), which means that the conductance
fluctuations are independent of the details of the conductor.

Furthermore, one of the unique properties of carbon
nanotubes is that their metallicity can be controlled by an
external magnetic field applied parallel to the nanotube axis.
This magnetic field gives rise to a periodic energy gap at
the charge neutrality point (CNP), where the bonding and
antibonding bands are crossed. When the cross section of
a nanotube is pierced by the magnetic field, the electronic
wavefunctions acquire an additional phase 2π�/�0. Thus,
metallic nanotubes can be made semiconducting and vice
versa. Over the past few years, remarkable efforts have been
undertaken to discover the effects of a magnetic field on the
band structure of nanotubes [30–43].

Following our previous paper [44], in which a perturbative
approach is well developed to include effects of the
band structure and impurity on the transport characteristics
of metallic nanotubes, the current work concentrates on
elucidating the influence of the AB-flux [45] on the differential
conductance (DC). The reason for this attempt is to study
how the magnetic field dependence of the band structure of
the nanotube influences the DC. This may provide us with
the possibility of fabricating magneto-conductance switching
devices based on the AB effect in defective metallic nanotubes.
It is shown that, for a couple of impurities, the nanotube
behaves like a Fabry–Perot electron resonator [53, 54] and the
coherent backscattering interference pattern (CBSIP) resulting
from the Fabry–Perot oscillations is aperiodically modulated
in the presence of the AB-flux. Aperiodicity means that no
specific magnetic flux periodicity is found in the MDC profile.
Further, extrema as well as zeros of the MDC are positioned at
irrational fractions of the magnetic flux with a spacing which
is decreased by increasing the magnetic field.

The paper is organized as follows. In section 2, the model
of [44] is developed to include the AB-flux. In section 3, we
discuss the CBSIP in the presence of the AB-flux both for a
single impurity and for a couple of impurities.

2. Theoretical model

We address a defective metallic single-walled carbon nanotube
(MSWCNT) in the presence of an axial electric and magnetic
field. A full description of the model in the absence of the

magnetic field can be found in [44]. Here, we just add the
AB-flux in its band structure, so the Hamiltonian of the whole
system is given by

Ĥ(�ρ) = Ĥtube(�ρ) + Ĥsd + Ĥimp. (1)

In the above equation the first term, describing the kinetic
energy of electrons for a perfect nanotube, is given by [44, 46]

Ĥtube(�ρ) =
∑

α=±

Nt /2∑

q=1

FBZ∑

k∈
Eα

q+�ρ
(k)Ĉ†α

q (k)Ĉα
q (k). (2)

In the presence of a uniform magnetic field �B parallel to the
nanotube axis, the wrapping modes are modified according to
q/rt → q/rt + �ρ/rt [31], so the magnetic field dependent
band structure E±

q+�ρ
(k) is [44]

E±
q+�ρ

(k)

γ0

= ±
{

1 + 4 cos

[√
3

2
acc

(
1

rt
[q + �ρ] sin ω + k cos ω

)]

× cos

[
3

2
acc

(
1

rt
[q + �ρ] cos ω − k sin ω

)]

+ 4 cos2

[√
3

2
acc

(
1

rt
[q + �ρ] sin ω + k cos ω

)]} 1
2

, (3)

where operators Ĉ†±
q (k) and Ĉ±

q (k) create and destroy
electrons in the orbital with energy E±

q+�ρ
(k), respectively.

The + and − signs correspond to the conduction and valence
band, respectively. Good quantum numbers of electron states
are (q, k) where q = 1, . . . , Nt /2 and k ∈ (−π/T, π/T ).
The quantities Nt , N = Nt/2, T , rt , acc � 1.44 Å, and
γ0 � 3.0 eV are the number of carbon atoms in the nanotube
unit cell, the number of graphene unit cells in a given nanotube
unit cell, the length of the translation vector, the nanotube
radius, the C–C bond length, and the nearest-neighbor overlap
integral energy, respectively. Also, ω = π/6 − θ where θ is
the chiral angel of the nanotube whose value for the armchair
and zigzag nanotube is π/6 and 0, respectively. It is assumed
that the on-site energy is zero and the Fermi energy remains
unchanged at the CNP. In zero magnetic field, all metallic
linear bands cross the undoped Fermi level either degenerated
at kF = 0 (metallic zigzag) or separated at kF = ±2π/3T
(armchair) in the first Brillouin zone (FBZ). �ρ equals �/�0,
with � = πr 2

t B . When �ρ becomes an integer, the AB-flux
is canceled by q . This means that the gap induced by the
magnetic field oscillates periodically and can be obtained by
the expression 
g(�ρ) = 2 min{|E+

q+�ρ
(k)|} (see figure 1(a)).

Lu [42] has shown that, for metallic nanotubes, the energy gap
induced by an axial magnetic field is expressed by


g(�ρ) =
{

3
0�ρ, if 0 � �ρ � 1
2

3
0|1 − �ρ |, if 1
2 � �ρ � 1,

(4)

where 
0 = γ0acc/rt defines a characteristic energy associated
with the nanotube. Note that the expression E±

q+�ρ
(k) =

±γ0 sin[π(q + �ρ)/n] gives van Hove singularity positions.
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Figure 1. The energy dispersion relation for subbands of armchair and metallic zigzag nanotubes in the presence of an axial magnetic field.
(a) A multiband model, coming from evaluating equation (3) in the presence of a 1000 T magnetic field pointing along its axis, for the (6, 6)
armchair (circle) and (6, 0) zigzag (square) nanotubes. The nanotube now has a finite subband-gap 
g(�ρ) expressed by equation (4), and all
degenerate levels have been split. Antibonding bands (green, Eq(k) > 0) are symmetric to the bonding bands (purple, Eq(k) < 0). (b) A
two-band model, which comes from evaluating equation (5) (Es(k) with s = 1) in the presence of a 10 mT magnetic field pointing along its
axis, includes the (6, 6) armchair (solid line) and (6, 0) zigzag (dotted) nanotubes. The subband-gap is now expressed by 
g(�ρ) = 3
0�ρ .
The electron scattering processes change electrons from right moving to left moving leading to electrical resistance. Generally, both
intrasubband and intersubband scattering events are likely. Energies are scaled in Rydberg and lengths in the Bohr radius.

Further, for later calculations we have exploited the
corresponding Bloch states of an isolated nanotube previously
derived in [44].

To consider the magneto-transport properties of the
nanotube near the Fermi level we adopt the light-cone
approximation of the dispersion relation of equation (3) which
provides us with a simple formula of the sth 1D subband
around kF. Thus, equation (3) reduces to [31]

E±
s+�ρ

(k)

γ0
= ±3acc

2

[(
s − 1

rt
+ �ρ

rt

)2

+ (k ∓ kF)
2

]1/2

,

(5)
where s = 1, . . . , Nt /2. For the lowest lying subband, with
s = 1 around k = ±kF, the energy band gap in the absence
of a magnetic field is zero. Using equation (5) one obtains

g(�ρ) = 3
0�ρ . As the field strength increases the line
through the Fermi energy at zero magnetic field is shifted
away further from the CNPs thus given rise to an increasing
energy gap. It is also worth mentioning that the quantity
μorb = evFrt/2, with vF = 3γ0acc/2h̄ ≈ 106 m s−1, is the
magnetic moment of an electron traveling in a loop of radius
rt with velocity vF. Changes in the energy of electron states
can be described by the interaction of this orbital magnetic
moment with an axial magnetic field. A magnetic field parallel
to the nanotube axis is predicted to shift the energy of these
states by 
E = −�μorb · �B = ±evFrt B/2 = ±3
0�ρ/2 (see
figure 1(b)).

Furthermore, the second and third terms in equation (1)
are, respectively, the Hamiltonian of non-interacting electrons
under the external source–drain voltage Vsd and the Hamil-
tonian of the interaction of electrons with impurities [47–49]
like those presented in [44]. Eventually, upon substituting q in

equation (20) of [44] by q + �ρ , we obtain the dimensionless
form of the MDC at zero temperature as follows:

Gαα
imp[Vsd, EF(0),�ρ]

G0

= π2

2

Nt /2∑

q,q ′=1

FBZ∑

k,k′ ∈

r∑

ξ,η=1

J qq ′
ξ,αα(k, k ′)J q ′q

η,αα(k ′, k)

× δ
[
Eα

q+�ρ
(k) − Eα

q ′+�ρ
(k ′)

]

×
[
sgn[vα

q+�ρ
(k)]sgn[vα

q ′+�ρ
(k ′)] − 1

]

×
{
δ
[
EF(0) − Eα

q+�ρ
(k) − eVsd

2
sgn[vα

q+�ρ
(k)]

]

+ δ
[
EF(0) − Eα

q ′+�ρ
(k ′) − eVsd

2
sgn[vα

q ′+�ρ
(k ′)]

]}
, (6)

where Gαα
total,imp = G++

imp + G−−
imp. Also, v±

q+�ρ
(k) =

(1/h̄)∂E±
q+�ρ

(k)/∂k is the electron velocity and J qq ′
ξ,αβ(k, k ′) is

a matrix for the impurity potential located at a position, namely,
�xξ [44]. We have also assumed that the magnetic field does not
affect the Fermi energy, i.e. EF(B) = EF(0). More importantly,
the expression [sgn[vα

q+�ρ
(k)]sgn[vα

q ′+�ρ
(k ′)]−1] controls the

scattering event from the initial state to the final state via the
sign of the electron velocity. It requires that only backward
scattering events are possible in one-dimensional systems like
nanotubes. The coherent backscattering (CBS) of the electron
is an effect that describes the appearance of a backscattered
peak when the electron traveling in a time-reversed path self-
interferes constructively in the backscattered direction. This
means that the electronic wave is weakly localized [50–52].

By obtaining the solutions of the energy–momentum
conservation equation, i.e. Eα

q+�ρ
(k) = Eα

q ′+�ρ
(k + g) where

3
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g is the transferred momentum, we now evaluate equation (6)
at some special k-points in the FBZ. Using equation (3) for the
(n, n) armchair nanotubes one obtains

g± = −k ± 2√
3acc

arccos

{
−1

2
cos

(
3(q ′ + �ρ)acc

2rt

)

± 1

2

[
cos2

(
3(q ′ + �ρ)acc

2rt

)
+ 4 cos2

(√
3kacc

2

)

+ 4 cos

(√
3kacc

2

)
cos

(
3(q + �ρ)acc

2rt

)] 1
2
}
, (7)

and for the (n, 0) zigzag nanotubes the equivalent expression
is given by

g± = −k ± 2

3acc
arccos

{
1

cos
(√

3(q ′+�ρ)acc

2rt

)

×
[
− cos2

(√
3(q ′ + �ρ)acc

2rt

)
+ cos2

(√
3(q + �ρ)acc

2rt

)

+ cos

(√
3(q + �ρ)acc

2rt

)
cos

(
3kacc

2

)]}
. (8)

For the intrasubband scattering, i.e. |q + �ρ, k〉 → |q ′ +
�ρ, k ′〉 = |q + �ρ, k + g〉, equation (7) has four scattering
roots as follows:

g± = 0,

−2k,

−k ± 2√
3acc

arccos

[
cos

(
3(q + �ρ)acc

2rt

)

+ cos

(√
3kacc

2

)]
, (9)

while for the metallic zigzag nanotubes equation (8) provides
only two roots 0 and −2k.
k ′ = k: The root g± = 0 means that q and k are conserved,
and no scattering event has occurred. Thus, the MDC becomes
zero.
k ′ = −k: The root g± = −2k describes the CBS of the
electron within the same subband to another Fermi point. In
the CBS effect, the electron is elastically scattered back to a
momentum directly opposite to its original momentum state in
the momentum space. Let G imp be replaced later on by GCBS.
For a couple of impurities located at �xξ = �Tl1 + �R j1 + �d1 and
�xη = �Tl2 + �R j2 + �d2, equation (6) yields [44]

Re

(
Gαα

CBS[Vsd, EF(0),�ρ ]
G0

)
= e|Vsd|

( πg

2MN
)2

×
Nt /2∑

q=1

FBZ∑

k∈
δ

{[
EF(0) − Eα

q+�ρ
(k)

]2 −
[

eVsd

2

]2
}

× cos

{
2k

[
(l2 − l1)T +

( �R j2 − �R j1

)
· �T

T

]}
, (10)

where M is the total number of nanotube unit cells [44].
Because E+

q+�ρ
(k) = −E−

q+�ρ
(k); if EF(0) = 0 then G++

CBS =
G−−

CBS. For the case of a single impurity the CBSIP is destroyed.
Because two carbon atoms A and B inside a graphite unit cell
belong to two different sublattices, the impurity can occupy
one of the lattice site. For simplicity, we have here assumed

that two impurities are substituted on B-sites with the same
circumferential angle along the nanotube axis [44]. These
arrangements of impurities break all mirror symmetry planes
containing the nanotube axis [16]. By turning the sum over k
into an integral and exploiting equation (5) for the lowest lying
subband, equation (10) leads to

Re

(
Gαα

CBS[Vsd,�ρ ]
G0

)
=

(
πeVsdg2T Y

Xh̄2v2
FMN 2

Y

)

×
[(

eVsd

h̄vF

)2

−
(

�Y
ρ

rY
t

)2
]− 1

2

× cos
[
2kF(l2 − l1)T Y

]

× cos

⎡

⎣

√(
eVsd

h̄vF

)2

−
(

�Y
ρ

rY
t

)2

(l2 − l1)T Y

⎤

⎦ . (11)

The total DC is then Re[G tot,Y
CBS ] = 2 Re[G++,Y

CBS ] =
2 Re[G−−,Y

CBS ]. From equation (11) one can draw several
conclusions: (1) For the armchair nanotubes we have X =
1, Y = arm, and kF = 2π/3T arm, while for the metallic
zigzag ones X = 2, Y = zig, and kF = 0. (2) The
cosine term is responsible for the CBSIP. Averaging over
different impurity configurations melts away this interference
term. (3) No switching effect from positive to negative MDC
occurs by changing the orientation of the magnetic field with
respect to the nanotube axis. This means that, the reciprocity
relation GCBS(�ρ) = GCBS(−�ρ) is fulfilled. (4) The
amplitude of this CBSIP depends on both the source–drain
voltage and the AB-flux. (5) In the limit �ρ → 0 one recovers
the solution of the free-magnetic field case derived in [44].
(6) Conduction through this gapped nanotube is sensitively
dependent on the exact position of the Vsd with respect to
the lowest level subband edges. Strictly speaking, there is
a threshold voltage determined by eVsd � 3
0�ρ/2 and
eVsd � −3
0�ρ/2 below and above which, respectively, the
transport is forbidden. This issue is in agreement with the
density of state due to the one-dimensional subbands expected
for semiconductor nanotubes. In other words, the MDC is
singular at the position of the lowest subband bottom indicating
its van Hove singularity. (7) A closer look at the argument of
the second cosine term reveals that the interference term leads
to aperiodic oscillations in the MDC profile. This is because
this argument is a nonlinear mapping of the AB-flux as well
as the source–drain voltage. In fact, the DC is aperiodically
modulated through the AB-flux. At zero temperature, it would
be plausible if we suppose that the system size plays the role
of the phase coherence length. In the presence of the AB-flux
the electrons acquire additional phases, and we can control the
interference pattern made from the conjugated time-reversed
paths. The negative MDC is more important. Actually, it
originates from not only the QI effects but also the pseudospin
conservation rule. The negative MDC feature may be exploited
for designing magneto-conductance switches based on the AB
effect.
k ′ = ±(2/

√
3acc) arccos[cos(3(q + �ρ)acc/2rt ) + cos(

√
3

kacc/2)]: These two last roots are actually the intersubband
backscattering around the same Fermi point, and we currently
discard them [56].
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Figure 2. The positions of extrema in �ρ -space are calculated using
the upper part of equation (14). (a) The allowed σ ’s for the (6, 6)
(diamond, blue) and (6, 0) (circle, red) nanotubes, with l2 − l1 = 50
and eVsd = 0.11, are 18 and 33, respectively. (b) The allowed σ ’s for
the (6, 6) (diamond, blue) and (6, 0) (circle, red) nanotubes, with
l2 − l1 = 250 and eVsd = 0.11, are 93 and 160, respectively. The
spacing between two horizontally adjacent lines is decreased with
increasing magnetic field, which obviously shows that oscillations
are aperiodic.

3. Discussions

Using the two-terminal Landauer–Bütticker approach for a
two-band model, the whole resistance of the nanotube is
approximately given by [12]

G−1
tube = (Gperfect)

−1 + G−1
CBS + G−1

c1 + G−1
c2 . (12)

In the above equation, the first term is the resistance of a
perfect ballistic nanotube with perfect contacts. It originates
from the redistribution of electrons between reservoirs and the
nanotube. The second term is the quantum correction coming
from the CBS effect. Two last terms, discarded here, are
for imperfect contacts between the nanotube and reservoirs.
To investigate the behavior of the MDC as a function of the
AB-flux, we have numerically performed equation (11) for
both armchair and zigzag nanotubes. Results are the same
for both repulsive and attractive impurity potentials. Let us
suppose g = 104γ0, representing a typical impurity, and M =
1000 000. In equation (11), the product of two cosine terms
is actually a resultant wave coming from the superposition
of two standing waves with the same amplitude but different
wavenumbers k1 = kF + (1/2)

√
(eVsd/h̄vF)2 − (�ρ/rt)2 and

k2 = kF − (1/2)
√

(eVsd/h̄vF)2 − (�ρ/rt)2. These two initial
standing waves describing two degenerate resonant states
induced by impurities in the FB Z are given by

fi =
(

πeVsdg2T

2Xh̄2v2
FMN 2

) [(
eVsd

h̄vF

)2

−
(

�ρ

rt

)2
]− 1

2

× cos(2kilm), i = 1, 2. (13)

Because two functions f1 and f2 are not periodic in the �ρ-
space, neither is their superposition, i.e. f1 + f2. Thus,
an aperiodic variation in the MDC is expected. The phase
difference for an electron propagating over the length lm is
given by δϕ(�ρ) = 2
klm where 
k = k1 − k2 =

B(mT)
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Figure 3. Calculated MDC as a function of the magnetic field B for
a single impurity. Results come from evaluating equation (11) for the
armchair and metallic zigzag nanotubes. (a) Traces are plotted for the
(6, 6) armchair, with eVsd = 0.11 and B ∈ [−22, 22] mT (solid,
blue), and eVsd = 0.15 with B ∈ [−30, 30] mT (dotted, red).
(b) Traces are plotted for the (6, 0) zigzag, with eVsd = 0.11 and
B ∈ [−38, 38] mT (solid, blue), and eVsd = 0.15 with
B ∈ [−52, 52] mT (dotted, red). They exhibit a U-like behavior. The
plateau of the zigzag nanotube is approximately twice the plateau of
the armchair one.

√
(eVsd/h̄vF)2 − (�ρ/rt)2. Constructive interference occurs

when the extrema of two waves add together and the phase
difference becomes an integer multiple of π , i.e. δϕ(�ρ) =
σπ , with σ ∈ Z. On the other hand, destructive interference
occurs when two waves have a phase difference of a half-
integer multiple of π , i.e. δϕ(�ρ) = (σ + 1/2)π . An analytic
expression in the �ρ-space can be derived easily as follows:

�σ
ρ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±rt

[(
eVsd

h̄vF

)2

−
(

σπ

2lm

)2] 1
2

,

constructive

±rt

[(
eVsd

h̄vF

)2

−
(

(2σ + 1)π

2lm

)2] 1
2

,

destructive.

(14)

The above equation actually gives the spacing between the
MDC extrema (constructive) or zeros (destructive) in the �ρ-
space. Due to the nonlinear mapping between δϕ(�ρ) and �ρ ,
the MDC versus �ρ behaves aperiodically. The most important
feature is that extrema and zeros are located at irrational
fractions in �ρ-space. In other words, � = irrational ×
�0. The nonlinear dependence of the extrema positions as a
function of σ is depicted in figures 2(a) and (b) for l2 − l1 = 50
and 250, respectively. In both panels the nonlinear behavior
of oscillations can be seen by comparing the spacing between
two horizontally adjacent lines. It should be pointed out that
variations in the MDC are aperiodic in eVsd-space as well.

Also, 
k can be expressed in terms of the series 
k =
λ(1 + χ/2 − χ2/8 + χ3/16 − · · ·), where λ = |eVsd/h̄vF|
and χ(�ρ) = −(�ρ/rt)

2/(eVsd/h̄vF)
2. Thus, the phase

accumulated by the electron can be expressed by δϕ = δϕ(0)+
δϕ(�ρ), where δϕ(0) = 2λlm is the phase difference in the
absence of the AB-flux and δϕ(�ρ) = λlm(χ −χ2/4+χ3/8−
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Figure 4. The calculated MDC coming from evaluating equation (11) for the nanotube (n, m) for a pair of impurities. The CBSIP shows
aperiodic oscillations. The extrema as well as zeros are located at the irrational fractions of �ρ . Positions of some extrema are indicated by
arrows. (a) (n, m) = (6, 6), eVsd = 0.11, B ∈ [−22, 22] (mT), and l2 − l1 = 50; (b) (n, m) = (6, 6), eVsd = 0.11, B ∈ [−22, 22] (mT), and
l2 − l1 = 250; (c) (n, m) = (6, 0), eVsd = 0.11, B ∈ [−38, 38] (mT), and l2 − l1 = 50; (d) (n, m) = (6, 0), eVsd = 0.11, B ∈ [−38, 38]
(mT), and l2 − l1 = 250. A comparison between, say, panels (b) and (d), exhibits that the faster/higher and slower/shorter aperiodic
fluctuations belong to metallic zigzag and armchair nanotubes, respectively.

· · ·) is the magnetic field dependent phase difference. As a
check, we see that, for χ = 0, i.e. in the absence of the AB-
flux, δϕ(�ρ) = 0. For the (n, n) armchair and (n, 0) zigzag
nanotubes we find r arm

t = 3nacc/2π ; T arm = √
3acc, and

r zig
t = √

3nacc/2π ; T zig = 3acc, respectively, so in this case
we approximate δϕ(�ρ) by λlmχ and it is straightforward to
show that δϕ(�ρ)

arm/δϕ(�ρ)
zig = √

3.
For a single impurity where l2 = l1, the nanotube is less

defective. In this case the quantum interference due to the
CBS is destroyed and the AB modulation becomes dominant.
Evaluating equation (11) leads to a U-like behavior for the
armchair and zigzag nanotubes. As depicted in figure 3, these
curves are symmetric and centered at B = 0 (or �ρ = 0). Each
curve has a plateau which decreases with increasing magnetic
field and its magnitude depends strongly on the location of
the source–drain voltage. A detailed look at panels 3(a)
and (b) shows that the magnitude of the zigzag plateau is
approximately twice the armchair one for a fixed value of the
source–drain voltage. Recently, Lassagne et al [40] have also
observed such U-like curves, of course through a Schottky

barrier for different gate voltages at non-zero temperatures,
for a clean multiwalled nanotube threaded by an AB-flux.
We should emphasize that although our result share some
similarities in the AB-pattern with that of [40] their underlying
physical transport phenomena could be different. It is expected
that at a non-zero temperature and gate voltage such U-like
behavior would drastically changed in our model.

Moreover, for a couple of impurities, with l1 �= l2, the
MDC as a function of �ρ for two different distances between
impurities is calculated. In figure 4, panels show aperiodic
fluctuations which alter between positive and negative values.
The amplitude of oscillations is increased with increasing
magnetic field, while the spacing between two adjacent
extrema is decreased. These fluctuations represent a hallmark
of defective quantum transport resulting from competition
between the CBS effect and the AB-flux. Such fluctuations
may be attributed to the Fabry–Perot oscillations [53]
modulated by the AB-flux. The positions of some extrema
in the MDC are labeled by arrows in figure 4(a). The most
striking and immediately visible difference between armchair
oscillations and zigzag ones, say by comparing panels 4(b)
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and (d), is that for the same value of the source–drain voltage
the fluctuations of the zigzag nanotubes are faster and higher
than those of the armchair one. The envelope functions of the
extrema have a U-shaped appearance as well.

In summary, this semi-classical study shows the subtle
interplay between the quantum interference phenomena
originating from Fabry–Perot oscillations [53] and the
magnetic field dependence of the band structure in defective
metallic nanotubes. We have shown how such oscillations can
be modulated using the AB-flux. Nonlinear mapping between
the MDC and the magnetic filed leads to aperiodic fluctuations.
Such results may be applied for manipulating defective
metallic nanotubes into quantum interference devices, say,
for the construction of nanotube magneto-conductance devices
based on the AB effect [55]. Moreover, it is worth mentioning
that the model is flexible enough to incorporate inelastic
events like electron–electron and electron–phonon scattering
events. In the presence of such decoherent effects we expect
a drastic change in the interference pattern of the differential
conductance.
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Nussbaumer T and Schönenberger C 1999 Nature 397 673
[33] Tian W and Datta S 1994 Phys. Rev. B 4 5097
[34] Lassagne B, Raquet B, Broto J M and González J 2006
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